例11:线性变换 / Example 11: Linear Transformation
离散随机变量X具有概率分布:
A discrete random variable X has the probability distribution:
| x |
1 |
2 |
3 |
4 |
| P(X = x) |
\(\frac{12}{25}\) |
\(\frac{6}{25}\) |
\(\frac{4}{25}\) |
\(\frac{3}{25}\) |
a) 写出Y的概率分布,其中Y = 2X + 1
a) Write down the probability distribution for Y, where Y = 2X + 1
c) 计算E(X)并验证E(Y) = 2E(X) + 1
c) Compute E(X) and verify that E(Y) = 2E(X) + 1
a) Y的概率分布:
a) The probability distribution for Y is:
| x |
1 |
2 |
3 |
4 |
| y = 2x + 1 |
3 |
5 |
7 |
9 |
| P(Y = y) |
\(\frac{12}{25}\) |
\(\frac{6}{25}\) |
\(\frac{4}{25}\) |
\(\frac{3}{25}\) |
b) E(Y) = 3×(12/25) + 5×(6/25) + 7×(4/25) + 9×(3/25) = 121/25 = 4.84
b) E(Y) = 3×(12/25) + 5×(6/25) + 7×(4/25) + 9×(3/25) = 121/25 = 4.84
c) E(X) = 1×(12/25) + 2×(6/25) + 3×(4/25) + 4×(3/25) = 48/25 = 1.92
c) E(X) = 1×(12/25) + 2×(6/25) + 3×(4/25) + 4×(3/25) = 48/25 = 1.92
验证:2E(X) + 1 = 2×1.92 + 1 = 4.84 = E(Y) ✓
Verification: 2E(X) + 1 = 2×1.92 + 1 = 4.84 = E(Y) ✓
例12:使用已知统计量 / Example 12: Using Known Statistics
随机变量X有E(X) = 4和Var(X) = 3。求:
A random variable X has E(X) = 4 and Var(X) = 3. Find:
a) E(3X) b) E(X - 2) c) Var(3X) d) Var(X - 2) e) E(X²)
a) E(3X) b) E(X - 2) c) Var(3X) d) Var(X - 2) e) E(X²)
a) E(3X) = 3E(X) = 3×4 = 12
a) E(3X) = 3E(X) = 3×4 = 12
b) E(X - 2) = E(X) - 2 = 4 - 2 = 2
b) E(X - 2) = E(X) - 2 = 4 - 2 = 2
c) Var(3X) = 3²Var(X) = 9×3 = 27
c) Var(3X) = 3²Var(X) = 9×3 = 27
d) Var(X - 2) = Var(X) = 3
d) Var(X - 2) = Var(X) = 3
e) E(X²) = Var(X) + [E(X)]² = 3 + 4² = 19
e) E(X²) = Var(X) + [E(X)]² = 3 + 4² = 19